

Welcome to Hermes’s documentation!

Contents:

	Hermes - Reference

Indices and tables

	Index

	Module Index

	Search Page

Hermes - Reference

Module loader.

Node Class to pull together receivers and publishers.

Functions as the smallest available unit with which can be communicated in a cluster.

It offers slots for a Publisher and Receiver object. Each of these must implement at least a
start() and stop() function, as well as a recv() (Receiver) and publish() (Publisher) method.
The passed objects are therefore not limited to hermes.Publisher
and hermes.Receiver objects.

When left unmodified, the Node will simply pass data from the receiver to the publisher.

hermes.Node supports the with statement and will start up all facilities it has
stored in its instance’s hermes.Node.facilities property. These will also be stopped after
leaving the with block, respectively.

	
class hermes.node.Node(name, receiver=None, publisher=None)

	Basic Node Class.

Provides a basic interface for starting and stopping a node.

Extend this as necessary.

	
facilities

	Return the names of facilities registered with this hermes.Node instance.

	
publish(channel, data)

	Publish the given data to channel, if a hermes.Receiver instance is available.

The topic is generated from channel and hermes.Node.name.

	Parameters

	
	channel – topic tree

	data – Data Struct or string

	Returns

	None

	
recv(block=False, timeout=None)

	Receive data from the hermes.Receiver instance, if available.

	
run()

	Execute the main loop, which can be extended as necessary.

If not extended, the following loop will be executed while
hermes.Node._running is True:

	call hermes.Node.recv() and check if there’s a message

	
	if a message was received:

	call hermes.Node.publish() and send message.

	Repeat.

	
start()

	Start the hermes.Node instance and its facilities.

	
stop()

	Stop the hermes.Node instance and its facilities.

Receiver Component for usage in Node class.

	
class hermes.receiver.Receiver(sub_addr, name, topics=None, exchanges=None)

	Class providing a connection to one or many ZMQ Publisher(s).

	
join(timeout=None)

	Join the hermes.Receiver instance.

Clears the hermes.Receiver._is_running flag, causing a graceful shutdown of
the run loop.

	Parameters

	timeout – timeout in seconds passed to threading.Thread.join() [https://docs.python.org/2/library/threading.html#threading.Thread.join]

	Returns

	None

	
recv(block=False, timeout=None)

	Wrap around Queue.get().

Returns the popped value or None if the queue.Queue is empty.

	Returns

	data or None

	
run()

	Execute the custom run loop for the hermes.Receiver class.

It connectos to a ZMQ publisher on the local machine using the ports
found in hermes.Receiver.ports. If this is empty, it simply loops doing nothing.

	Returns

	None

	
stop(timeout=None)

	Stop the hermes.Receiver instance.

	Parameters

	timeout – time in seconds until TimeOutError is raised

	Returns

	None

Publisher component for use in a Node class.

	
class hermes.publisher.Publisher(pub_addr, name, ctx=None)

	Allows publishing data to subscribers.

The publishing is realized with ZMQ’s Publisher sockets, and supports publishing
to multiple subscribers.

The hermes.Publisher.run() method continuously checks for data on the internal q,
which is fed by the hermes.Publisher.publish() method.

	
join(timeout=None)

	Join the hermes.Publisher instance and shut it down.

Clears the hermes.Publisher._running flag to gracefully terminate the run loop.

	Parameters

	timeout – timeout in seconds to wait for hermes.Publisher.join() to finish

	Returns

	None

	
publish(envelope)

	Publish the given data to all current subscribers.

	Parameters

	envelope – hermes.Envelope instance

	Returns

	None

	
run()

	Custumized run loop to publish data.

Sets up a ZMQ publisher socket and sends data as soon as it is available
on the internal Queue at hermes.Publisher.q.

	Returns

	None

	
stop(timeout=None)

	Stop the hermes.Publisher instance.

	Parameters

	timeout – time in seconds until TimeOutError is raised

	Returns

	None

Basic XPub/XSub Proxy Interface for a cluster.

	
class hermes.proxy.PostOffice(proxy_in, proxy_out, debug_addr=None)

	Class to forward subscriptions from publishers to subscribers.

Uses zmq.XSUB & zmq.XPUB ZMQ sockets to act as intermediary. Subscribe to
these using the respective PUB or SUB socket by binding to the same address as
XPUB or XSUB device.

	
debug_addr

	Return debug socket’s address.

	
run()

	Serve XPub-XSub Sockets.

Relays Publisher Socket data to Subscribers, and allows subscribers
to sub to that data. Offers the benefit of having a single static
address to connect to a cluster.

	Returns

	None

	
running

	Check if the thread is still alive and running.

	
stop(timeout=None)

	Stop the thread.

	Parameters

	timeout – timeout in seconds to wait for join

Data structs for use within the hermes ecosystem.

	
class hermes.structs.Envelope(topic_tree, origin, data, ts=None)

	Transport Object for data being sent between hermes components via ZMQ.

It is encouraged to use hermes.Message as data for more complex data objects, but
all JSON-serializable built-in data types are supported.

They track topic and origin of the data they transport, as well as the
timestamp it was last updated at. Updates occur automatically whenever
hermes.Envelope.serialize() is called.
This timestamp can be used to detect Slow-Subscriber-Syndrome by hermes.Receiver and
to initiate the suicidal snail pattern.

	
convert_to_frames(encoding=None)

	Encode the hermes.Envelope attributes as a list of json-serialized strings.

	Parameters

	encoding – the encoding to us for str.encode() [https://docs.python.org/2/library/stdtypes.html#str.encode], default UTF-8

	Returns

	list of bytes

	
static load_from_frames(frames, encoding=None)

	Load json to a new hermes.Envelope instance.

Automatically converts to string if the passed object is
a bytes.encode() object.

	Parameters

	
	frames – Frames, as received by zmq.socket.recv_multipart()

	encoding – The encoding to use for bytes.encode(); default UTF-8

	Returns

	hermes.Envelope instance

	
update_ts()

	Update the hermes.Envelope timestamp.

	
class hermes.structs.Message(ts=None)

	Basic Struct class for data sent via an hermes.Envelope.

Provides basic and dynamic load and dump functions to easily load
data to and from it.

If you have complex data types, consider extending this class, as it requires less overhead
than, for example, dictionaries, by using __slots__.

The class’s timestamp attribute (ts) denotes the time of which the data was received.

	
load(data)

	Load data into a new data struct.

	Parameters

	data – iterable, as transported by hermes.Envelope

	Returns

	hermes.Message

	
serialize(encoding=None)

	Serialize this data struct to bytes.

	Parameters

	encoding – Encoding to use in str.encode()

	Returns

	data of this struct as bytes

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hermes	

 	
 	
 hermes.node	

 	
 	
 hermes.proxy	

 	
 	
 hermes.publisher	

 	
 	
 hermes.receiver	

 	
 	
 hermes.structs	

Index

 C
 | D
 | E
 | F
 | H
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | U

C

 	
 	convert_to_frames() (hermes.structs.Envelope method)

D

 	
 	debug_addr (hermes.proxy.PostOffice attribute)

E

 	
 	Envelope (class in hermes.structs)

F

 	
 	facilities (hermes.node.Node attribute)

H

 	
 	hermes (module)

 	hermes.node (module)

 	hermes.proxy (module)

 	
 	hermes.publisher (module)

 	hermes.receiver (module)

 	hermes.structs (module)

J

 	
 	join() (hermes.publisher.Publisher method)

 	(hermes.receiver.Receiver method)

L

 	
 	load() (hermes.structs.Message method)

 	
 	load_from_frames() (hermes.structs.Envelope static method)

M

 	
 	Message (class in hermes.structs)

N

 	
 	Node (class in hermes.node)

P

 	
 	PostOffice (class in hermes.proxy)

 	publish() (hermes.node.Node method)

 	(hermes.publisher.Publisher method)

 	
 	Publisher (class in hermes.publisher)

R

 	
 	Receiver (class in hermes.receiver)

 	recv() (hermes.node.Node method)

 	(hermes.receiver.Receiver method)

 	run() (hermes.node.Node method)

 	(hermes.proxy.PostOffice method)

 	(hermes.publisher.Publisher method)

 	(hermes.receiver.Receiver method)

 	
 	running (hermes.proxy.PostOffice attribute)

S

 	
 	serialize() (hermes.structs.Message method)

 	start() (hermes.node.Node method)

 	stop() (hermes.node.Node method)

 	(hermes.proxy.PostOffice method)

 	(hermes.publisher.Publisher method)

 	(hermes.receiver.Receiver method)

U

 	
 	update_ts() (hermes.structs.Envelope method)

The technical concept of hermes

Hermes uses ZeroMQ as the transport layer, while providing data structures containing relevant
meta data to the program running it.

A Hermes system requires four components to run:

	A Receiver object capable of receiving data from a source

	A Publisher object which publishes, or broadcasts, the data

	An Envelope object transporting the data

	A Node, which runs either a receiver or publisher or both and handles Envelope objects

Optionally, a proxy can be used to simplify subscription to publisher. A Proxy object is provided
by Hermes, but a ZeroMQ.proxy object will do just fine.

 nav.xhtml

 Table of Contents

 		
 Welcome to Hermes’s documentation!

 		
 Hermes - Reference

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

